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Study of the volume fraction, temperature, 
and pressure dependence of the resistivity 
in a ceramic-polymer composite using a general 
effective media theory equation 
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A quantitative general effective media (GEM) equation is used to describe quantitatively the 
resistivity of an Fe304-epoxy composite system over a large range of volume fractions in terms 
of the resistivities of each component and two percolation morphology parameters. One 
parameter is the critical (percolation) volume fraction, qb c, and the other is an exponent, t. 
Preliminary models, also based on the GEM equation, are used to describe the positive 
temperature coefficient of resistivity (PTC) and the piezoresistivity (uniaxial pressure) of the 
composite when the composition is near the percolation threshold. 

1. Introduction 
Ceramic fillers can be incorporated into polymer 
matrices to produce composite materials having prop- 
erties different from those of the two separate com- 
ponents. The properties of the composite material 
vary as a function of the volume fraction of each 
component. For example, the resistivity of a conduct- 
ing ceramic-filled polymer composite gives a per- 
colation-type curve as shown in Fig. 1 for an 
FeaO,-polymer composite. At low volume fractions 
of the conducting material (filler), the resistivity is 
close to that of the polymer (matrix). As the volume 
fraction of the filler increases, the resistivity slowly 
decreases until the percolation threshold is reached. 
At this point on the curve, a small increase in the filler 
volume fraction will produce a large decrease in the 
resistivity. Finally, at volume fractions above the per- 
colation threshold, the resistivity approaches that of 
the conducting component. 

Composite materials with volume fractions near the 
percolation threshold (or critical volume fraction) 
which can exhibit a measurable change in resistivity 
with temperature are known as thermistors. Likewise, 
composites which show a strong pressure-dependent 
resistivity are known as piezoresistors or pressure 
sensors. In this article an equation which combines 
aspects of both percolation theory and effective media 
theories is used to describe the volume fraction, the 
temperature, and the pressure dependence of the re- 
sistivity of the Fe304-epoxy composite system. 

2. The general effective media (GEM) 
equation 

Much experimental and theoretical work has been 

done to examine and to explain how the volume 
fractions a n d  the morphology of the components af- 
fect the electrical behaviour of the composite materials 
(see, for example, [1]). Previous theoretical work has 
been based on both percolation and effective media 
theories. Percolation theory [2, 3] is limited in that the 
percolation equations are valid near the percolation 
threshold only when the ratio of the resistivities of the 
two components is infinite [4]. This can be a problem 
when dealing with real systems where all the compon- 
ents have finite resistivities. However, percolation 
theory does become valid in cases of finite resistivities 
near the percolation threshold by the use of scaling 
factors [43. 

Effective media theories [3] are used to try to 
predict the effective, or large-volume average, of the 
electrical resistivity, dielectric constant, thermal con- 
ductivity, gaseous diffusion, and magnetic permeabil- 
ity of composites. There are two special cases for 
which effective media theories exist, the symmetric and 
the asymmetric cases [3]. The symmetric case assumes 
that a random mixture of spherical (oriented ellipsoi- 
dal) particles of two (or more) components completely 
fill all space. In the asymmetric case the surfaces of the 
particles of one component (the filler) are always com- 
pletely covered by the other component (the matrix). 
The volume ratio of the coating to the interior is the 
same for all filler particles. In the derivation of both 
theories, the particle sizes are assumed to have an 
infinite size range in order to fill all space. When one 
component is a perfect insulator, the symmetric media 
theory contains a conductor-insulator transition 
at a specific conductor volume fraction, whereas 
the asymmetric theory does not [3]. In practice, 
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Figure 1 The resistivity versus volume fraction of filler material for 
Fe304 composites. ( ) Generated using the GEM equation. The 
parameters used are given in the text. 
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Figure2 Equations 1, 2 and 3 are plotted for O ' l = 1 0 - 6 ~ c m  -1 
(Pla= 106 fl  era), c~ h = 1 fZcm- 1 (Pl = 1 f]cm), d~c = 0.16 (f~ = 0.84), 
and t = 1.7 as a function of dO. 

conductor-insulator transitions occur over a wide 
range of volume (or area in two dimensions) fractions 
(see, for instance, [5-10]). 

A generalized effective media (GEM) equation with 
two morphology parameters, qb c and t, has been pro2 
posed by McLachlan [5]. It was derived as an inter- 
polation between the symmetric and asymmetric 
effective media theories. The GEM equation written in 
terms of electrical conductivity is 

1 -- ~ ( ( y ~ / t _  Cylm/,) 

CYll/' + [(1 - dpc)/~r 

r k f r v l / t  - -  (ylm/t) 

+ CYh TM + [(1 - qb~)/qbCJ~m/' = 0 (1) 

where qb is the volume fraction of the high conductivity 
component, and qbc is the critical volume fraction of 
the high conductivity component at which a percola- 
tion path is formed through the media by the high 
conductivity component. Here, % is the conductivity 
of the low conductivity component, cy h is the conduct- 
ivity of the high conductivity component, cy m is the 
conductivity of the medium itself, and t is an exponent. 
Equation 1 reduces to the symmetric and asymmetric 
theories and has the mathematical form of the per- 
colation equation in the appropriate limits [5]. 

The GEM equation c a n  also be viewed as a 
matched asymptotic expression as it interpolates 
between the two percolation equations given below. 
When o I = 0, the GEM equation, with f =  1 - qb and 
f~ = 1 - f~ ,  reduces to 

(~m = O ' h ( 1 - - f / f ~ ) '  (2) 

and when c~ h = o% Ph = 1/CYl, Pl = 1/% it becomes 

p~ = Oh(1 -- qb/dpc)' (3) 

This is illustrated in Fig. 2 where Equations 1, 2 
and 3 are plotted for the typical three-dimensional 
morphology parameters qb~ = 0.16 and t = 1.7 with 
cyh= 1 f lcm -1 or Pl = 1 f~cm and ol = 10 - 6  ~ c m  - 1  

or Ph = 106 ~ cm. This figure clearly indicates where 
the percolation equations will not suffice and the 
GEM equation must be used. 

Whenfr = 1 or 0O~ = 1, Equations 2 and 3 are both 
forms of the Bruggeman asymmetric equation [3] 
which allows values for Lf, L , ,  mf, and rn, to be 
calculated from the corresponding exponent in the 
asymmetric media theory [5, 11, 12], which gives 

L f  = 1 - f e l t  (4a) 

L ,  = qb~/t (4b) 

rrtf = t / f  e (4c) 

m ,  = t/?pc (4d) 

Values of mf and m,  as functions of the demagnetiz- 
ation coefficient Lr ~ ( L  b - L a )  calculated for (Yl = 0 
and o h = 0% respectively, from Equation 23 in [12], 
are plotted in [5]. 

The GEM equation has been used to fit accurately a 
vast amount of conductivity data [5-10]. It has also 
been used to fit the electrical and thermal conductivi- 
ties, and experimental permeability data from a series 
of sintered nickel samples (0.144).95 volume fraction 
of nickel) while using the same two morphology para- 
meters, f~ and t [6], 

In Section 4, the GEM equation is used to fit quant- 
itatively the resistivity versus volume fraction data for 
FeaO4-epoxy composites. In Section 5 the temper- 
ature coefficient o f  resistivity and the pressure de- 
pendent resistivity for a 47 vol % Fe30 4 sample is 
modelled using the GEM equation. 

3. Fitt ing p r o c e d u r e  
The experimental resistivity versus volume fraction 
data for the FeaO4-eccogel (1365-0) epoxy systems 
E13] were fitted to the G EM equation using the free 
parameters qbr t, Oh (the resistivity of the polymer) 
= 1/ch, and Pl (the resistivity of the conductive filler) 
= 1/oh. The computer program, which utilizes an 

IMSL non-linear regression fitting program, uses the 
experimental conductivity (volume fraction) to calcu- 
late a volume fraction (conductivity) called "Calc" 
from Equation 1. Calc is then compared with the 
actual volume fraction (conductivity) called "Expt". 
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The sum of the squares of the residuals, called "SSQ" 

SSQ = ~ [(Calc - Expt)] / (5) 
n 

is minimized by the computer program for the n data 
points. 

4. Volume fraction results 
Fig. 1 shows the experimental data for the resistivities 
measured at 25~ for varying volume fractions of 
Fe30 4 in epoxy and the theoretical fit using the GEM 
equation. 

The parameters used to generate the theoretical 
curves are: P F e 3 0 4  = 1.62x 10 / f~cm, Ppoly  = 8.91 
x 109 ~cm,  ~ = 0.496 and t = 1.50. The extrapol- 
ated resistivity of Fe30 4 given by the GEM equation 
is in reasonable agreement with the measured resistiv- 
ity of the powder (2.00-3.00x 102 ~cm) [13]. The 
resistivity of the polymer (eccogel 1365-0) given by the 
GEM equation is in reasonable agreement with the 
values calculated using the GEM equation for graph- 
ite- and carbon black-epoxy composites (1.30 x 101~ 
and 8.3 x 109 f~ cm) [14], respectively. The value of the 
exponent, t, is similar to the universal value of 1.65 for 
three dimensions given in percolation theory [2]. qb~ 
and t for the Fe304-epoxy system are similar to those 
of the graphite-epoxy system which has been shown 
to exhibit the behaviour of a random distribution of 
filler particles in a polymer matrix [14]. A random 
distribution occurs in systems in which the filler par- 
ticle size is approximately the same size as the polymer 
particle size [15, 16]. Segregated distributions, with 
lower values of qb~, occur in systems in which the 
particle size of the filler material is much smaller than 
that of the polymer [15, 16]. Segregated-type behavi- 
our has been shown to occur in carbon black-epoxy 
composites [14]. The value of the demagnetization 
coefficient, L~, (Equation 4), for the Fe304 system is 
0.331, which corresponds to a c/a ratio of approxi- 
mately 1 (c/a = 1 for spheres). These values suggest that 
the Fe30 4 particles can be approximated as isolated 
spheres in a random configuration. The critical vol- 
ume fractions of the segregated and random distribu- 
tions are dependent upon the number of contacts per 
filler particle which is about 1.5 at the percolation 
threshold [2, 17]. 

In studies where conducting hard spheres are placed 
at random on a regular lattice or conducting hard 
spheres are randomly packed together with equally or 
near equally sized insulating spheres, the qbo value 
is about 0.16-0.18 [2]. For systems such as 
Fe304-epoxy in which qb~( = 0.496) is greater than the 
usual value of about 0.17, some of the filler particles do 
not make contact with their nearest neighbour par- 
ticles, due to the partial wetting of the particles by the 
polymer. Hence, not only will the probability of a site 
being occupied by a conducting particle be less than 1 
(Ps < 1), but so too will the probability of a bond 
between nearest neighbour sites (Pb < 1). Therefore 
(as illustrated in Fig. 4.18 in [2] or Fig. 7 in [18]), if 
the medium is to remain conducting when Pb is de- 
creased, P~s (the critical site probability) must be in- 

creased. Therefore, as ~r = vPcs (where v is the volume 
filling factor per site, e.g. 0.637 for randomly packed 
spheres) an inverse relationship exists between ~c and 
Pb (or Pcb if one is exactly at the site-bond percolation 
threshold). In the present case the partial wetting of 
the conducting particles has presumably decreased the 
bond probability by an amount such that qbr = 0.496. 
Note that if the particles were completely wetted 
by the polymer the situation would be that of a 
Bruggeman asymmetric system with qbr = 1. 

5. Modelling of the independent 
variables, temperature and pressure 

The GEM equation can also be used to model the 
positive temperature coefficient of resistivity (PTC) 
and the piezoresistivity (uniaxial pressure) of a 
47 vol % Fe304-epoxy composite. 

In these preliminary attempts to model the positive 
temperature coefficient of resistivity and piezoresistiv- 
ity, the following assumptions are made. 

1. For site-bond percolation (Pos -  Pcb), as Pcb 
decreases, P~s increases, where Pou and P,~ are defined 
as the values of P~ and Pb along the locus of points 
defining the boundary between the percolating 
(conducting) and non-percolating (insulating) re- 
gions. (P~ - Pcb phase boundaries are illustrated in 
Fig. 4.18 of [2] and Fig. 7 of [18].) 

2. The relationship [2] vPs = ~ is valid everywhere 
in the site-bond space defined in the aforementioned 
figures. Only on the Pc~--Pcb boundary is the equation 
vPr = qb~ valid. 

3. For values of Pb and Ps close to the Pos--Pob 
boundary (Pb ~ Pob, P~ ~ P , ,  and qb ~ qb~) and 
for small changes along the P~s-PCb boundary, as- 
sumptions 1 and 2 are assumed to be good approx- 
imations. Therefore, as a first approximation, 
Pb( ~ Pcb) PC 1/qb( ~ 1/qbo). A linear dependence of the 
bond probability between nearest neighbour particles 
on the temperature and pressure is assumed. However, 
it should be noted that for large changes along the 
Pcs-Pcb boundary and for values of Pb and P~ far from 
the boundary, these relations may not be valid and/or 
the inverse relation may not be a linear one. 

Based on these assumptions, the equation used to 
model the PTC effect assumes that at some critical 
temperature, To, the critical volume fraction, qbc, 
becomes equal to the actual volume fraction, 

qbr = dp/[1 - m ( T -  T~)] (6) 

where m is a multiplier and ~b is the volume fraction of 
the Fe304. The experimental data are fitted by substi- 
tuting Equation 6 for qbr in the GEM equation (Equa- 
tion 1). The five variable parameters for the fit are t*, 
c~, oh, T~, and m with qb being fixed, where t* describes 
the temperature-dependent conductivity, t* should 
not be compared with t, which describes the volume 
fraction-dependent conductivity, as they do not 
describe the same physical processes. The following 
equation was also used to fit the data 

~(T) = qb~[1 - m ( T -  T~)] (7) 

This equation assumes that at some temperature, T~, 
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the volume fraction at room temperature, 40, which is a 
function of temperature, would become equal to the 
critical volume fraction, 40c. Equation 7 was found not 
to fit the data as satisfactorily as Equation 6. 

Similarly, it is assumed for the piezoresistivity that 
the number of contacts changes as a linear function of 
pressure 

40o(e) = 40c(0)/(I + raP) (8) 

The experimental resistivity versus pressure data are 
fitted using the GEM equation, Equation 8 substi- 
tuted for 40~ and now only four parameters (t*, Pl, Ph, 
and m) are variables as 40c(0) is assumed to have the 
value obtained from fitting the resistivity versus vol- 
ume fraction data (Fig. 1). 

6 .  P o s i t i v e  t e m p e r a t u r e  c o e f f i c i e n t  o f  

r e s i s t i v i t y  r e s u l t s  

Fig. 3 shows the experimental data and two theoret- 
ical fits for the resistivity versus temperature of a 
47 vol % F%O4-epoxy composite. The data are only 
shown over the temperature range where the resistiv- 
ity changes rapidly because of the simplistic linear 
model being used. 

The parameters used to generate the solid line in 
Fig. 3 are Pve3o, = 9.94 f~cm, [3poly = 1012 Qcm, 
t* = 1.49, Tr = 40.8 ~ and m = 2.73 x 10 -s. These 
parameters are obtained using the starting values of 
13Fe30., Ppoly, and t from the resistivity-volume fraction 
data, a T~ in the mid-temperature range, and an appro- 
priately small value of m. The resistivities of the Fe30 4 
and the polymer given by the temperature-dependent 
results are not consistent with the values given by the 
volume fraction results. The Pw~o4 is two orders of 
magnitude lower and the I%oly is tWO orders of magni- 
tude higher than the volume fraction resistivities. To 
force self-consistency between the resistivities of the 
temperature dependent and the volume fraction res- 
ults, the resistivities of the Fe30 4 and polymer were 
fixed to the values given by the volume fraction re- 
suits. The results of this three-parameter fit to the data 
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Figure3 The resistivity versus temperature for a 47vo1% 
F%O4-epoxy composite. ( ) Generated using the GEM 
equation and a five-parameter fit, ( - - - )  generated using the GEM 
equation and a three-parameter fit to the data. The model and the 
parameters are given in the text. 
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Figure 4 The resistivity versus uniaxial pressure for a 47 vol % 
Fe304-epoxy composite. ( ) Generated using the GEM 
equation and a four-parameter fit, ( - - - )  the three-parameter fit. 
The details are given in the text. 

give the dashed line in Fig. 3. The parameters are: 
t* =3.44, T~ =29.3 ~ and m=4.19 x 10 -3. Given the 
crudeness of the model (i.e. a linear approximation 
and not accounting for the temperature-dependent 
resistivity of the separate components of the com- 
posite), the theoretical fits to the experimental data are 
reasonable. 

7. Uniaxial piezoresist iv i ty  results 
Fig. 4 shows the experimental data and a theoretical 
three-parameter (9Fo3O,, t*, m) fit for the resistivity 
versus uniaxial pressure of a 47 vol % Fe304-epoxy 
composite. The resistivities given in the actual 
paper [13] were normalized using the resistivity at 
zero pressure. To get quantitative data, the resistivity 
at zero pressure is taken to be 9(0) = 1.10 x 10 8 Qcm, 
which corresponds to the resistivity of a 47 vol % 
sample given by the GEM equation in Fig. 1. 

Initially, a four-parameter fit to the data was at- 
tempted and produced the parameters: Pve30, = 4.0 
• 10 2 f~cm, Ppoly = 1 . 5 5  X 1 0  IO ~cm,  t* = 1.69 and m 
-- 0.0122, which is shown as a solid line in Fig. 4. A 

three-parameter fit, shown as the dashed line in Fig. 4, 
which used a fixed value of Ppoly = 8.91 x 109 f lcm 
(Section 4) gives: PFe30, = 6.58 X 102 f]cm, t* = 1.54, 
and m -- 0.0121. The theoretical curve can be seen to 
be at least semi-quantitatively correct. Because the 
changing geometric factor is not taken into account, 
the data points are also only semi-quantitative. 

9 .  C o n c l u s i o n  
The general effective media (GEM) equation has 
been used to quantitatively fit the resistivity-volume 
fraction data for a ceramic-polymer composite 
(Fe304-epoxy). The value of 40c and the demagnetiz- 
ation coefficient, L+ and m,,  suggest a random dis- 
tribution of filler particles for the composite system in 
which the filler particles are partially wetted by the 
polymer, i.e. Pb  < 1.0. 

A more detailed account of effective media and 
percolation theories as well as the derivation and 



properties of the GEM equation are given in a review 
article [18]. 

A preliminary attempt to model the positive tem- 
perature coefficient (PTC) of resistivity and the piezo- 
resistivity (uniaxial pressure) of a ceramic-polymer 
composite near the critical volume fraction, ~ ,  using 
simplistic linear models, produced reasonable fits to 
the experimental data. The model assumed that the 
number of contacts per particle changed linearly with 
the temperature and pressure. Considerably better 
theoretical models for d~c(T ) and qbc(P) and more 
experimental work are needed to elucidate fully these 
effects. 
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